Name ___

Compute the Big O of the following functions.

public static void fun1(int n) {
[bookmark: _GoBack]for (int k=0; k<n; k++)
System.out.println(“Println runs in constant time”);
}

1. ___O(n)____
Runs one loop n times, so the big-O run time is O(n)

public static void fun2(int n) {
for (int k=0; k<n; k++)
{
System.out.println(“Println runs in constant time”);
}
for (int k=0; k<n; k++)
{
System.out.println(“Println runs in constant time”);
}
}

2. ___O(n)____
Runs two loops n times, one after the other, which is a total runtime of 2n, so the big-O run time is O(n) (because we drop the constants)

public static void fun3(int n) {
for (int k=0; k<n; k++)
{
for (int j=0; j<n; j++)
{
System.out.println(“QQQ”);
		}
}
}

3. ___O(n2)____
Runs two loops n times, one inside the other, which is a total runtime of n2, so the big-O run time is O(n2)

public static void fun4(int n) {
for (int k=0; k<n; k++)
{
for (int j=0; j<k; j++)
{
System.out.println(“Handy functions are handy!”);
		}
}
}

4. ___ O(n2)_______
The first loop runs n times, the loop inside that runs 0 times the first outer iteration, 1 time for the second outer iteration, 2 times for the third outer iteration, etc until the last iteration when it runs n-1 times.
So, 0 + 1 + 2 + 3 + … + n-1, which is the same as ∑(n-1). ∑n is , but since we go from 0 to (n-1) instead of 1 to n, we’ll substitute (n-1) into the summation formula:

 This is our final formula for exact runtime, which is O(n2) for big-O
If you don’t want to do the math every time, if a loop can ever run n times, then its runtime is considered to be O(n) in the worst case. Since we know the outer loop is O(n), an inner loop of O(n) will cause O(n2) run times. For this class, we will not ask for exact runtimes, so if you just know how to estimate the Big-O runtime by sight, that’s enough.
[bookmark: __DdeLink__509_708049507]
public static void fun5(int n) {
for (int k=0; k<n; k++)
{
for (int j=0; j<n; j++)
{
	for(int i=0; i < n; i++)
System.out.println(“QQQ”);
		 } } }

5. ______ O(n3)_______
Each nested loop runs in O(n) time, since they’re all nested into one another, it’s O(n3) time total.

public static void fun6(int n) {
for (int k=0; k<n; k++)
{
for (int j=0; j<6; j++)
{
System.out.println(“Println runs in constant time”);
}
}
}

6. _____ O(n)_______
The actual runtime for this method is 6n, because you run the inner loop 6 times for every n. This reduces to a Big-O of O(n)

public void fun7(int n) {
for (int k=0; k<n; k++)
{
for (int j=6; j<n; j++)
{
this.callOofNSquaredFunction(n);
}
}
}

7. ____ O(n4)_______
For the actual runtime for the outer loop, we get n*(n-6), which is O(n2). We’re told the inner function runs in O(n2). This means that we run an O(n2) function O(n2) times, so we multiply those together and the final runtime is O(n4).

//n in this case is the length of foo
public void fun8(String[] foo) {
 int n = foo.length;
for (int k=0; k<n; k++)
{
for (int j=6; j<n; j++)
{
insertionSort(foo);
}
}
}

8. ____ O(n4)_______
For the actual runtime for the outer loop, we get n*(n-6), which is O(n2). We’re told the inner function is insertion sort, which is also O(n2) in the worst case, so fun8 is O(n4) overall.
_

public void fun9(String[] foo) {
for (k=0; k<n; k++) {
int j = n;
while (j > 0)
{
j /= 2; // integer division
}
}
}

9. _____ O(nlogn)_______
The outer loop (the for loop) runs in O(n) time. The inner loop reduces its count each time by 2. This will give a log(n) runtime. So the overall runtime is O(nlogn).

Name: ___ Compute the Big O of the following functions.
	public static void funX(int n) {
for (int k=0; k<n; k++)
{
System.out.println(“Println runs in constant time”);
}
for (int k=0; k<n; k++)
{
for (int j=0; j<n; j++)
{
System.out.println(“QQQ”);
		}
}

}

//n in this case is the length of foo
public void funA(ArrayList<String> foo) {
 foo.add(0, “hello”); //adds at the beginning of the list
}

//n in this case is the length of foo
public TreeSet<String> funB(ArrayList<String> foo) {
 TreeSet<String> set = new TreeSet<String>();
for(String s : foo) {
	set.add(s); //treeset’s add is log n
 //(you’ll find out more in 230)
}
return set;
}

//n in this case is the number of elements in the 2d-array data
public boolean funC(int[][] data) {
	for(int i = 0; i < data.length; i++) {
for(int j = 0; j < data[i].length; j++) {
	if(data[i][j] == 35) return true;
}
}
return false;
}
//now do the same one above, but data[][] is an n by n array

//n in this case is the length of data
public void funD(int[] data) {
	int n = data.length;
for (int k=0; k<n; k++)
{
for (int j=n; j<n+7; j++)
{
this.doABinarySearch(data,44);
}
}
}

public void funE(int n) {
	int val = 1;
	while(val < n) {
		val = val*2;
		System.out.println(“Still going”);
}
}
	

1. _____ O(n2) ______
First loop runs in n time, second outer loop in n time, inner loop in n time, this is n2 + n time, which is O(n2) in Big O

2. ____ O(n) ________
Addition to the beginning of an ArrayList is O(n) as everything must shift right to make room

3. ______ O(n logn) ________
Addition to a TreeSet is logn, and you do it n times for each item in foo

4. _____O(n) ________
Because n is only the length of the 2D array, not the length of both the 2D and each 1D array inside. So, we only care about the growth of the 2D array’s length.

5. _______ O(n2) ________
In the worst case, this can run through both loops twice, and if the length of both is the same, then the growth is O(n2)

6. _____ O(nlogn)_______
Outer loop is O(n) time, the inner loop is constant (7 operations each time), binary search is O(logn) and it’s inside the outer loop, so O(nlogn)

7. ______ O(logn)_______
The end value increases by a multiplier of 2 each time, so it will approach the end value in O(logn) time.

